Final Summary of GRSP Activities

Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

> NGT8-52887 August 1, 2000 through October 31, 2002

Michael Randy Morrell Georgia Institute of Technology School of Aerospace Engineering

Advisor's Note

Mr. Morrell left the PhD program at Georgia Tech in September of 2001 to pursue a permanent job with GE Power Systems. This final report summarizes the GSRP research work Mr. Morrell was able to complete as a summer intern at NASA - MSFC during the summer of 2001 and represents the sum of work completed under NGT8-52887 from inception through project termination.

Dr. John R. Olds School of Aerospace Engineering

GSRP Summer Internship Experience at NASA MSFC

Randy Michael Morrell
NGT8-52887
Summer 2001

NASA TD40 Organization

Combustion Physics Lab

- Unique facility for investigating high pressure rocket combustion
- Pressures of up to 6000 psi (~400 atm)
- $O_2 H_2$ and O_2 hydrocarbon flames
- Small scale, e.g. flow rates of 50 g/sec for 10 sec
- Optically accessible combustion chamber
- Bldg 4549 / TD40 Lab A

Advanced Hydrocarbon Fuels

- High Energy Density Matter (HEDM)
 hydrocarbons currently being researched by the
 military, principally the AFRL
- NASA interested in possible applications to future launch vehicles
- Plan to add AFRL chemist to the group to develop and synthesize these fuels 'in-house'

GSRP Summer Tasks

- Assist in the installation of the high pressure combustion facility
- Research issues related to high pressure combustion
- Literature review of HEDM hydrocarbon characteristics for future work

High Pressure Facility Installation

- Funding approved for the facility
- High pressure piping, pumps, and storage purchased
- Optical diagnostic equipment purchased
- Combustor funding applied for
- Waiting for lab space to be vacated

High Pressure Combustion Issues

- Supercritical behavior
 - local vs. global
- Mixing / shear layer interaction
- Diagnostic techniques in high density flows
- Scaling from lab scale to full scale

DLR Experimental Results

Mayer, W. et al, J. Prop. Power, Vol 12, pp. 1137-1147, 1996.

HEDM Hydrocarbons

The energy content of a molecule is increased by adding unsaturation:

$$-(CH_2)_n-$$

$$\Delta H_f$$
 (kcal/mol)

The energy content of a molecule is increased by incorporating strain:

cyclopentane

-18.4

 ΔH_f (kcal/mol)

cyclobutane

+6.8

cyclopropane

+12.7

Selected candidate fuels:

bicyclopropylidene

 $HC = C - CH_2 - CH_2 - C = CH$

1,5-hexadiyne

312

Isp sec (RP-1 = 299)

311

313

^{*} from PRC briefing to Rocketdyne

GSRP Summer Intern Summary

- High pressure lab now expected to begin installation this fall and operation this winter/spring.
- Limited work done to date on high-pressure, supercritical combustion. Most of work on supercritical combustion being done in Europe.
- Key contacts made with HEDM hydrocarbon researchers.